Redrock Postgres Search Chinese
Version: 9.3 / 9.4 / 9.5 / 9.6 / 10 / 11 / 12 / 13 / 14 / 15 / 16

8.4. Binary Data Types

8.4.1. bytea Hex Format
8.4.2. bytea Escape Format

The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

NameStorage SizeDescription
bytea1 or 4 bytes plus the actual binary stringvariable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings in two ways. First, binary strings specifically allow storing octets of value zero and other non-printable octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets, and also disallow any other octet values and sequences of octet values that are invalid according to the database's selected character set encoding. Second, operations on binary strings process the actual bytes, whereas the processing of character strings depends on locale settings. In short, binary strings are appropriate for storing data that the programmer thinks of as raw bytes, whereas character strings are appropriate for storing text.

The bytea type supports two external formats for input and output: PostgreSQL's historical escape format, and hex format. Both of these are always accepted on input. The output format depends on the configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The input format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format

The hex format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some contexts, the initial backslash may need to be escaped by doubling it, in the same cases in which backslashes have to be doubled in escape format; details appear below. The hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit pairs (but not within a digit pair nor in the starting \x sequence). The hex format is compatible with a wide range of external applications and protocols, and it tends to be faster to convert than the escape format, so its use is preferred.

Example:

SELECT E'\\xDEADBEEF';

8.4.2. bytea Escape Format

The escape format is the traditional PostgreSQL format for the bytea type. It takes the approach of representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot be represented as an ASCII character into special escape sequences. If, from the point of view of the application, representing bytes as characters makes sense, then this representation can be convenient. But in practice it is usually confusing because it fuzzes up the distinction between binary strings and character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. So this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and precede it by a backslash (or two backslashes, if writing the value as a literal using escape string syntax). Backslash itself (octet value 92) can alternatively be represented by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet ValueDescriptionEscaped Input RepresentationExampleOutput Representation
0zero octetE'\\000'SELECT E'\\000'::bytea;\000
39single quote'''' or E'\\047'SELECT E'\''::bytea;'
92backslashE'\\\\' or E'\\134'SELECT E'\\\\'::bytea;\\
0 to 31 and 127 to 255non-printable octetsE'\\xxx' (octal value)SELECT E'\\001'::bytea;\001

The requirement to escape non-printable octets varies depending on locale settings. In some instances you can get away with leaving them unescaped. Note that the result in each of the examples in Table 8.7 was exactly one octet in length, even though the output representation is sometimes more than one character.

The reason multiple backslashes are required, as shown in Table 8.7, is that an input string written as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash of each pair is interpreted as an escape character by the string-literal parser (assuming escape string syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted strings can be used to avoid this level of escaping.) The remaining backslash is then recognized by the bytea input function as starting either a three digit octal value or escaping another backslash. For example, a string literal passed to the server as E'\\001' becomes \001 after passing through the escape string parser. The \001 is then sent to the bytea input function, where it is converted to a single octet with a decimal value of 1. Note that the single-quote character is not treated specially by bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each non-printable octet is converted into its equivalent three-digit octal value and preceded by one backslash. Most printable octets are represented by their standard representation in the client character set. The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet ValueDescriptionEscaped Output RepresentationExampleOutput Result
92backslash\\SELECT E'\\134'::bytea;\\
0 to 31 and 127 to 255non-printable octets\xxx (octal value)SELECT E'\\001'::bytea;\001
32 to 126printable octetsclient character set representationSELECT E'\\176'::bytea;~

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and carriage returns if your interface automatically translates these.